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Abstract

Background: Although autism and epilepsy are considered to be different disorders,
epileptiform EEG activity is common in people with autism even when overt seizures
are not present. The relatively high comorbidity between autism and all epilepsy
syndromes suggests the possibility of common underlying neurophysiological
mechanisms. Although many different epilepsies may be comorbid with autism,
absence epilepsy is a generalized epilepsy syndrome with seizures that appear as
staring spells, with no motor signs and no focal lesions, making it more difficult to
diagnose. Application of nonlinear methods for EEG signal analysis may enable
characterization of brain activity that can help to delineate neurophysiological
commonalities and differences between autism and epilepsy. Multiscale entropy and
recurrence quantitative analysis (RQA) were computed from EEG signals derived from
children with autism or absence epilepsy and compared with the goal of finding
significant and potentially clinically useful biomarkers neurophysiological differences
between these two childhood disorders.

Methods: Multiscale entropy and a multiscale version of RQA were computed from
EEG data obtained from 92 children were collected in two different settings at
Boston Children’s Hospital. Short segments of alert resting state EEG were selected
for analysis. A complexity index derived from entropy and RQA methods was
computed from each of 19 standard EEG channels for all subjects using publicly
available software. Statistical comparisons were made between the groups. Machine
learning classifiers were also used to determine which derived features were most
significantly different among the groups, and to determine classification specificity
and sensitivity.

Results: Significant differences were found between absence, autism, and control
groups in a number of different scalp locations and the values of complexity index.
Autism values appeared to be intermediate between epilepsy and control in many
locations, and differences between controls and absence patients were more widely
distributed across scalp locations. Classification algorithms were able to distinguish
absence epilepsy and autism cases from controls with high (>95%) accuracy.
Importantly, two independent control groups, although they were derived from
different settings and with different equipment were statistically indistinguishable.
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Conclusions: Signficant neurophysiological differences were found between absence,
autism, and control cases. In most scalp regions, autism values were intermediate
between the control values and absence values, suggesting several future research
studies. Nonlinear EEG signal analysis, together with classification methods, may provide
complementary information to visual EEG analysis and clinical assessment in epilepsy and
autism, and may provide useful information for research on pediatric neurodevelopmental
and neurological disorders. Additional research may enable neurophysiological biomarker
profiles to be derived from these techniques for clinical use.

Keywords: Epilepsy, Autism, EEG, Multiscale entropy, Nonlinear, Signals, Recurrence plot
analysis, Machine learning

Background
Autism spectrum disorder (ASD, or simply ‘autism’) and epilepsy are common neuro-

developmental disorders that account for a large proportion of child and adult neuro-

logic burden of disease [1], with co-morbidities as high as 30% or more [2–5]. Some

researchers have suggested that the degree of clinical overlap between ASD and epi-

lepsy arises from a common neurodevelopmental dysfunction [6]. The heterogeneous

spectrum of symptoms displayed both disorders makes it particularly difficult to study

commonalities and differences between these disorders. There is evidence of abnormal

epileptiform abnormalities in children with ASD even in the absence of clinical

seizures, but little is known about the clinical or therapeutic implications of this [7]. Gen-

etic studies have found that variants of a single gene (SCN2A) could cause either gain of

function and increased neuronal excitability resulting in seizures, or loss of function and

decreased neuronal excitability leading to an outcome of ASD [8]. This suggests that simi-

lar mechanisms with variable outcomes may be involved in ASD and epilepsy.

ASD constitutes a heterogeneous developmental syndrome that is usually character-

ized by a triad of impairments that affect social interaction, communication skills, and

a restricted range of interests and activities [9, 10]. ASD is not a single disorder, but

rather a spectrum of various subtypes with different (largely unknown) causes and

developmental trajectories. Current prevalence estimates are that 1 in 68 children now

born the US will meet the criteria for an ASD diagnosis [11]. The incidence of autism

globally is thought to be relatively uniform, although estimates vary greatly. A preva-

lence of 1 in 38 children in South Korea was reported [12]. In general, reliable data

from low income countries is lacking. One study of global prevalence found no clear

evidence of a change in prevalence for ASD between 1990 and 2010 [13]. Estimates of

ASD prevalence as high as 1 in 38 children in South Korea have been reported [12].

Although prevalence of ASD is believed to be relatively uniform throughout the world,

very little reliable data is available in low income countries [12], where the prevalence

of epilepsy is estimated to be significantly higher than in high income countries [14].

Epilepsy has also been described as a heterogeneous neurological spectrum disorder

[15] that is characterized by an enduring predisposition to generate epileptic seizures.

Older definitions characterize epilepsy by at least two unprovoked seizures occurring at

least 24 h apart, and by the neurobiological, cognitive, psychological, and social conse-

quences of this condition [16]. A more recent definition accepted by the International

League Against Epilepsy (ILAE) refines this definition to include reflex seizures that are
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provoked by, for example, flashing lights or other common environmental stimuli, and

the possibility of outgrowing epilepsy [17]. Epilepsy in the US occurs in approximately

0.6% in children and 1% in adults for all epilepsies [18]. As previously mentioned,

epilepsy is believed to be more common in low income regions, but data from these

regions is lacking [14]. The paucity of reliable data on the prevalence of both ASD and

epilepsy from the majority of the world's population suggests a critical need for further

research. There is a continuing need for greater communication and research studies

between the epilepsy and ASD communities to help shed light on the relationship

between these disorders [7].

Although the relationship between ASD and epilepsy is not well understood, the high

co-occurrence of these disorders suggests a common underlying neurodevelopmental

pathology [6]. A link between epileptiform discharges and developmental disorders has

been described in cases of ‘subclinical’ discharges without epilepsy [19, 20]. Even in the

absence of overt seizures, reports of epileptiform activity in electroencephalograms

(EEGs) in up to 60% of children with ASD have been reported [4, 21], and children

with early onset seizures are at higher risk of developing ASD [22]. The incidence of

epileptiform abnormalities is reported to correlate the severity of autistic symptoms

[23]. Both epileptiform discharges and seizures are a manifestation of abnormal exces-

sive synchronization of neurons, resulting in high amplitude discharges seen on EEG

traces. A better understanding of the underlying cause of the shared susceptibility for

ASD and epilepsy may create new opportunities for early intervention that can amelior-

ate or prevent symptoms from emerging [7]. Since electrophysiological abnormalities

appear to be associated with both disorders, new approaches to EEG analysis are prom-

ising avenues for investigation.

Childhood absence epilepsy (AE, formerly known as petit mal epilepsy) is a subtype

of generalized idiopathic epilepsy. The hallmark of an absence seizure is an abrupt loss

of consciousness, usually without motor impairment that may last a few seconds to half

a minute [24]. Because of the lack of overt seizures, the symptoms of AE are sometimes

initially misdiagnosed as an attention deficit problem (ADHD) [25–27]. Absence

seizures in children with ASD may not be detected because the seizure symptomology

may be similar to behavioral symptoms of autism [7].

A specific seizure type is not known to be more common to ASD [7], but seizures

with motor symptoms or focal lesions may be easier to detect. AE was chosen for this

study because it is relatively common in childhood, lacks of identifiable lesions, seizure

focus, and motor signs, which make it more difficult to easily distinguish from ASD.

Various measures of nonlinear dynamics have been computed from EEG time series

in order to detect changes immediately prior to the onset of seizures or epileptiform

discharges. Permutation entropy was found to change significantly up to 5 s before

seizure onset in rat models of AE [28]. Kolmogorov entropy, Correlation Dimension

[29], Relative Wavelet Energy [30] and Approximate Entropy [31] have all demon-

strated some success for detecting pre-seizure onset periods, but could not distinguish

healthy controls from epilepsy patients during seizure-free periods. Mixed results have

been reported for automated seizure detection algorithms based on four different

measures (principal eigenvalue, total power, Kolmogorov entropy, correlation dimension).

The algorithms were found to be patient-age specific and no single algorithm performed

well on all patients [32].
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Application of EEG analysis to the detection of ASD is more recent, but has shown

some success. Catarino et al. found significantly decreased multiscale entropy in ASD-

diagnosed participants compared to controls [33]. Bosl et al., found the same trend in

multiscale entropy in infants who were not old enough to exhibit the defining charac-

teristics of ASD. The latter found that the greatest differences are observed between 9

and 12 months of age, as multiscale entropy shows an overall different developmental

trajectory for infants at high-risk of developing ASD compared to low-risk infants [34].

Elridge et al. used Bayesian methods to perform a similar classification between ASD

and typically developing children, from 6-10 years old. This study extracted robust fea-

tures such as variance in time, entropy or sum of signed differences from the EEG

signal and then used logistic regression and a native Bayes classifier to divide the two

groups with a 79% accuracy [35].

A relatively recent approach to nonlinear system characterization, based on statistical

analysis of recurrence plots, is called recurrence quantitative analysis or RQA [36–38].

RQA is an empirical approach to analyzing time series data and is in principle capable

of characterizing all of the essential dynamics of a complex system and is useful for

analyzing “real-world, noisy, high dimensional data” [39]. It has proven to be a powerful

tool already in physics, geophysics, engineering and biology [36, 40]. Applications to

neurology and neuroscience are in the early stages. In principle, RQA is capable of

detecting significant state changes in a dynamical system [36, 37, 41], which suggests

that it may be appropriate for detecting developmental changes in brain function that

are associated with chronic neurological and mental dysfunction. Recurrence

quantitative analysis has been used for early seizure detection by distinguishing ictal

and inter-ictal entropy states [42–44] and recently for differentiating children with

ASD from typically developing children [45].

We performed a quantitative analysis to evaluate the use of nonlinear features derived

from multiscale entropy and RQA applied to EEG segments as biomarkers for AE and

ASD. The goal of this study was to perform characterize and compare the

electrophysiological dynamics of the brains of children with ASD and AE, using broad

nonlinear analysis techniques, in order to contribute to understanding commonalities

and differences between these disorders. A secondary goal was to introduce nonlinear

signal analysis, feature selection, and machine learning as tools for discovery in

neurophysiology research.

Methods
This study was performed at two different settings within Boston Children’s Hospital

(BCH). Epilepsy patients and a control group were seen at a tertiary epilepsy center in

the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology,

Boston Children’s Hospital (BCH). A flowchart illustrated the data processing steps

followed is shown in Fig. 1. Details for each step are described below.

Data were collected retrospectively from a database of patients who had undergone

routine EEG at the tertiary epilepsy center in the Division of Epilepsy and Clinical

Neurophysiology, Department of Neurology, Boston Children’s Hospital (BCH). The

Institutional Review Board at Boston Children’s Hospital granted approval for the use

of this data for this study. Given the retrospective nature of the clinical epilepsy data,

the need to obtain individual informed consents was waived for these subjects.
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ASD patient data were acquired in the Laboratories for Cognitive Neuroscience

(LCN) in the Developmental Medicine Division at BCH. Children with ASD and

controls were recruited specifically for participation in this study. The study was

approved by the Committee on Clinical Investigations at Boston Children’s Hospital.

Parental written informed consent was obtained after the experimental procedures had

been fully explained.

The main demographic features of all subjects are summarized in Table 1. Twenty-

four AE cases and 18 ASD cases are included, along with 49 controls from both

settings: 24 controls from the epilepsy clinic and 23 controls from the Laboratories of

Cognitive Neuroscience.

BCH epilepsy clinic

A database of patients undergoing routine electroencephalograms (EEG) performed at

the BCH Epilepsy center was reviewed retrospectively and two populations of subjects

were identified: patients with typical absence seizures and patients that underwent an

Fig. 1 Data processing flow diagram. Algorithms or publicly available software for all computational steps
are described in the text

Table 1 Numbers and demographic features of the study population

Parameter BCH epilepsy clinic Lab Cog Neuro (LCN)

AE Control 1 ASD Control 2

N = 26 N = 24 N = 18 N = 23

Mean age in years (std dev) 8.6 (1.7) 7.74 (4.3) 8.8 (1.9) 8.6 (1.4)

Gender (male/female) 13/13 9/15 16/2 21/2
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EEG for different reasons but were eventually determined to not have epilepsy (control

group). All subjects selected from the Epilepsy Center met the following inclusion

criteria: 1) normal neuropsychological development, and 2) no other EEG abnormalities

than those consistent with generalized AE. Diagnosis was confirmed by documented

seizures on EEG, and the diagnosis of typical absence seizures was confirmed after

careful evaluation of the clinical and EEG features by at least one board-certified

clinical neurophysiologist. EEGs were measured with a Natus Neuroworks XLTEK

EMU 40 system, and with NeuroWorks software version 8.

The epilepsy control group met the following criteria: 1) at least one EEG study

because of the clinical suspicion of seizures, 2) normal routine EEG study after visual

inspection, 3) very low-risk of a diagnosis of epilepsy after a thorough electro-clinical

evaluation. Causes for performing an EEG study in controls included daydreaming,

syncope, night terrors or sleepwalking.

EEG data was sampled at 200 Hz for all Epilepsy Center subjects. Based on the

Nyquist criterion, this implies that frequencies up to 100 Hz are included. From the AE

cases, an experienced neurologist not directly involved in this study used visual review

to select 30-s samples containing no spikes or evidence of epileptiform activity. Simi-

larly, 30-s segments were selected from the control group after visual review. These

samples contain 6000 points in each EEG sensor time series. A single segment from

each subject was provided for analysis. The control group taken from the Epilepsy

Center will be referred to as the ‘control 1’ group when necessary to distinguish is from

the ‘control 2’ group. All EEG samples collected in the Epilepsy Center were from

awake subjects and the segments chosen appeared normal to the neurophysiologist on

visual analysis. For all subjects, segments of equal length were collected on 19 channels

located according to the standard 10-20 system. We note that a single continuous

segment, without visible epileptiform activity and without visual artifacts were selected

from each subject. No other filtering was performed on the EEG signals.

Laboratory of cognitive neuroscience autism study subjects

The autism study group of participants included 18 children with an autism spectrum

disorder (mean age = 9.0 years; SD = 1.7; 16 males, 2 females) and 23 typically

developing children (mean age = 8.6 years; SD = 1.4; 12 males, 11 females). Participants

were recruited from a list of families who had expressed interest in research participation.

ASD diagnosis was confirmed by clinical diagnosis as reported by the parent and/or by

meeting criteria on the Autism Diagnostic Observation Schedule (ADOS) in a research

setting conducted within the past year.

All LCN electrophysiological recording was completed in an electrically and sound-

shielded testing room with low lighting. Children were seated on a chair approximately

60 cm in front of the experimental monitor. Continuous baseline EEG was recorded

before children were presented with images or other stimuli. Only baseline data was

used in this study.

Continuous EEG was recorded using a high density 128-channel Geodesic Sensor

Net (Electrical Geodesics Inc., Eugene, OR). The electrical signal was amplified with a

0.1 to 100 Hz band-pass, digitized at 500Hz, and stored on a computer disk. The data

were analyzed offline by using NetStation 4.4.1 analysis software (Electrical Geodesics
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Inc., Eugene OR). After using an artifact detection tool standard to the NetStation

software package to exclude segments with eye saccades and blinks, the remaining

segments were visually scanned by an experimenter blind to study group. For comparison

to the subjects examined in the BCH Epilepsy Center, only 19 channels were selected

from the sensor net, corresponding to the positions in the standard 10-20 montage [46].

As with all subjects, 6000 points were selected from each EEG time series.

EEG analysis methods

Each of the EEG samples was processed in an identical manner by the following steps.

A single segment of 6000 points was selected from EEG data for each subject, as

described above, from each of the respective settings. Average referencing was

computed and used for all EEG time series. Data from all subjects were selected from

the standard 10-20, 19-sensor montage locations.

Multiscale time series for scales 1 to 32 were derived from the original EEG signals

using the coarse-graining procedure described in (Costa et al., 2005). This procedure is

illustrated in Fig. 1. We note that for scales 1, 2, 4, 8, 16, and 32 the coarse-graining

procedure is identical to the approximations derived with a Haar wavelet transform

[47], though we did not use wavelets in this research. For this research, the coarse-

graining algorithm was used. RQA values were computed on all scales 1 to 32 for each

subject at each EEG electrode. The EEG times series for all subjects from both labora-

tories contain frequencies up to 100 Hz. This was the Nyquist limit for the Epilepsy

Center data, which had a sampling rate of 200 samples per second. The LCN data was

filtered for frequencies of 0.1 to 100 Hz.

RQA values were computed for all of the scales derived from each EEG channel using

publicly available software [48]. For input to the algorithms, the embedding dimension

(m) was 10, the time delay was 2, and the threshold for the recurrence plot (tau) was

30. For detailed discussions of how these values may be determined, see [41, 43, 44].

Multiscale sample entropy was also computed and included in this set of EEG signal

features and is denoted by SampE as in [49]. Sample entropy and the entropy derived

from RQA, denoted “L_entr”, are expected to be similar quantitative measures, but

derived from different algorithms. Thus, eight features or values were computed for

each EEG sensor time series. Table 2 lists the nonlinear values computed for this study

and provides a brief description of their meaning in a physical context.

The area under each multiscale curve, called a complexity index or CI [50], was com-

puted by summing the value at each scale, then dividing by the total scale length. The

area under the curve takes into account, to some extent, the starting point, slope, and

convexity of the curve. For all comparisons in this paper, the CI for each measure

(sample entropy, RR, DET, and so on) will refer to the area under the multiscale curve.

Larger multiscale entropy has been reported for healthy physiological systems in

general [51], but it is not clear what values should be expected for other nonlinear

measures, such as those computed in recurrence quantitative analysis. Examples of the

multiscale curves at Fp1 and Fp2 for the DET measure are shown in Fig. 2.

Nonlinear measures applied to physiologic data such as posturography data in

children with autism, tend to be lower than in typical controls [52]. Similarly, the

complexity index in patients with AE decreased across all EEG channels in a standard
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19 sensor montage during seizures [50], with greatest changes from pre-ictal to seizure

states occurring in frontal and central regions. However, differences in complexity index

between AE patients and controls during inter-ictal periods have not been reported.

For classification calculations, the features used were the complexity index for each

feature described in Table 2, at each sensor location for a total of 152 features. A recur-

sive feature elimination algorithm was used to rank the features and a standard Support

Vector Machine (SVM) classifier was then used to classify each of the groups when

compared to controls, as well as to compare the epilepsy and autism control groups

(control 1 and control 2) to each other.

A recursive feature elimination algorithm was used to rank the features and a standard

Support Vector Machine (SVM) classifier was then used to classify each of the groups

when compared to controls, as well as to compare the control groups to each other.

Classification results shown in Table 4 were derived from 10-fold cross validation

calculations. Feature ranking and selection were done using a recursive feature

Table 2 Recurrence quantitative analysis variables and their interpretation

RQA variable Symbol Description

Recurrence rate RR The probability that a system state recurs in a finite time. RR has been
found useful for detecting evoked response potentials (ERPs) using
single trials [30].

Determinism DET DET comes from repeating patterns in the system and is an indication
of its predictability. Regular, deterministic signals, such as sine waves, will
have higher DET values, while uncorrelated time series, such as chaotic
processes and random numbers, will cause low DET.

Laminarity LAM Laminarity represents the frequency of occurrence of laminar states
in the system without describing the length of these laminar phases.
More frequent appearance of laminar states may relate to more frequent
“seeds” for synchronized dynamics [46], which may be related to
epileptiform spiking on an EEG trace.

Max line length L_max Lmax is related to the largest Lyapunov exponent of a chaotic signal,
which is a dynamic complexity measure that describes the divergence of
trajectories starting at nearby initial states, [47]. Lower values are typically
associated with pathological conditions [43, 48].

Entropy derived from
diagonal lines

L_entr This measure of entropy is derived from the diagonal lines of the
recurrence plot. It is related, but not identical to, other measures of
entropy, such as the sample entropy used in previous studies [37]

Trapping time TT Trapping time is an estimate of the time that a system will remain in a
given state - “trapped” state. Thus, lower TT values may be an indication
of more frequent transitions between dynamical states and less system
stability.

Fig. 2 Example of a multiscale curve is shown for determinism (DET) values at Fp1 and Fp2. Visual inspection
reveals that significant differences are found over many scales
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selection algorithm as implemented in the widely used, open source scikit-learn

package (http://scikit-learn.org/stable/modules/cross_validation.html; [53]). Feature

selection used the automatic selection call, pred = rfecv.predict(X), where X is the

matrix containing the features in columns and subjects in row. Y is an array of la-

bels (ASD, AE, or control). Features consisted of the complexity index for each

sensor and each of the features in Table 2. The code needed to reproduce these re-

sults is shown here:

Recursive feature selection is used with a Support Vector Machine (SVC) classifier

algorithm to recursively remove features that have low scores as SVC support vectors

and build a model based on remaining features. Model accuracy is used to identify

which features and combinations of features contribute most to classification accuracy.

The empirical p-values were computed using the method of permuting labels as

described in [54]. The idea is to randomly assign the labels to subjects, then carry out

the classification and compute accuracy. This process is repeated one hundred times.

The number of times that the accuracy with permuted labels exceeds the accuracy with

true labels is an estimate of the p-value. That is, it is an estimate of the probability that

the accuracy determined with the true labels would have been computed if the null

hypothesis (no group differences) were true.

Results
Multiscale RQA plots were computed for each of the 19 sensor locations in the stand-

ard 10-20 configuration. The multiscale time series were derived from the original EEG

segments using a previously described averaging method [51]. Although methods for

comparing curves based on mean value, slope and various shape parameters are pos-

sible, we chose in this study to use the mean value of the multiscale curve to represent

the entire curve for simple comparisons between curves. Using the mean values only,

group differences that met an overly strict Bonferroni-corrected criterion of p < 10−4,

derived by dividing the commonly used significance cutoff of 0.05 by 19*8 (19 sensors,

8 features) and rounding down to the nearest power of 10, are shaded in Figs. 4, 5, 6, 7,

8. Multiscale curves were computed for the following RQA values: RR, DET, LAM,

L_entr, L_mean, L_max and TT. In addition, the modified multiscale sample entropy

(SampE) used in [49] was also computed. Collectively, these are referred to as ‘signal

features’ or simply features hereafter. A single Complexity Index (CI) computed from

the area under the multiscale curve has been introduced in the literature [55]. Previous

studies have examined several RQA values (RR, DET, LAM) computed on a single scale

from EEG time series. Determinism (DET) and Laminarity (LAM) were been found to

be lower closer to the epileptic zone in patients with focal epilepsies, while recurrence

rate (RR) and entropy were higher [56]. This suggests that similar differences in general
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might be found between AE cases and controls, since AE is not localized. Although we

found some differences in the CI for SampE and all RQA values, when we use a strict

significance criterion of p < 10−4, the most important nonlinear features were not RR,

DET, and LAM, but the remaining features. The significance threshold was derived

using a strict Bonferroni correction from the commonly used threshold of .05, dividing

by the number of features (19 sensor locations times 8 CI values) and rounding down

to the nearest power of ten.

Table 3 summarizes the most significant group differences found when comparing

group pairs at each sensor location and for each signal feature. The significance was

computed using the two-tailed independent t-test found in the scipy.stats.ttest_ind

package using default parameters. A surprising result was that the two control groups

were indistinguishable. They did not have any significant differences at any sensor

location for any signal feature. This is important because the EEG measurements were

taken with different equipment, in two different settings: one a research laboratory, the

other a busy tertiary epilepsy center. Furthermore, classification methods could not

distinguish between control groups. For this reason, the control groups were combined

for all other group comparisons.

Absence versus controls

The absence group differed significantly from the control at most sensor locations across

the scalp for one or more signal features when comparing the mean value of the curve

across all scales. The EEG segments were from inter-ictal cases and did not exhibit epilep-

tiform activity. L_max and SampE were the most significantly different. Of the eight

features, only two (L_mean and TT) did not meet the significance criterion of p < 10−4 at

any location for any feature using mean values. If slope is considered, then group mean

slopes for some sensor locations for L_mean and TT are significantly different.

ASD versus controls

The ASD group also differed significantly from the control groups. Similar signal features

were significant as to the absence-control comparison, but scalp locations were not as

widely distributed. Table 4 reveals that the most significant differences were at scalp loca-

tions in the orbitofrontal (Fp1, Fp2), left temporal (T7) and occipital (O1, O2) regions.

Table 3 The significance of group differences was computed using the two-tailed t-test for each
sensor location and each signal feature

Classification Most significant sensor locations (Bonferroni
corrected significance level of 10−4 used)

Most significant nonlinear measures

AE vs. controls Frontal, occipital, temporal, parietal SampE, L_entr, L_max, TT

Fp1, Fp2, Fz, F8, T7, P7, Pz, P8 O1, O2

ASD vs. controls Frontal, occipital, left temporal SampE, L_max, L_entr

Fp1, Fp2, T7, O1, O2

AE vs. ASD Central and occipital L_max

Fz, F4, C3 Cz, C4, P3, Pz, P4, O1, O2

Control 1 vs. Control 2 No significant differences No significant differences

Bosl et al. Neuropsychiatric Electrophysiology  (2017) 3:1 Page 10 of 22



Absence versus ASD

Although the absence and ASD groups differed from controls in similar locations,

when compared to each other the only significant group differences were found in

the L_max features in central locations. Importantly, L_max values for absence

cases in Central (Fz, Cz, Pz, C3, C4) and Parietal regions (P3, P4, and O1) were

significantly lower than for the ASD cases. However, control and ASD values in

these regions were similar.

For all group comparisons, and for the feature ranking calculations discussed

below, L_max is the most useful feature for differentiating the absence, ASD and

control groups. Thus, group mean multiscale values for L_max are shown in

Table 4 for each sensor location and each group. The yellow highlighted values are

those that differ significantly between absence and ASD groups. L_max is lowest in

the absence group at every location. L_max values for the ASD group are inter-

mediate between absence and controls at most locations, though higher than the

controls at F7, Fz, Cz, C3, C4, T8, and P4. With the exception of T8, these are

also the locations where absence and ASD groups differ most significantly.

Table 4 L_max group values and significant group differences are shown

Yellow shading indicates locations where absence and ASD groups differ significantly. While the absence values are
much lower than controls almost everywhere, ASD deviations from controls are primarily limited to Fp1,2 and O1,2
regions
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Machine learning classification

The complexity index for each nonlinear measure, and each scalp location, was used as

input to machine learning classification algorithms. The result of these classification

calculations is shown in Table 5. The AE versus control classification was 100%, and ASD

versus controls was 97% (a single false positive error). AE versus ASD classification was

less accurate (75, 72 sensitivity for AE and 77% specificity), suggesting that the AE and

ASD subjects were much harder to differentiate from each other than from the controls.

The empirical p-values shown were computed using the permutation tests method

described in the methods section [54]. Classification results are shown in Table 5.

Although it would seem that the highest ranked features would be those that are

statistically the most different in two groups, for classification this may not be the case.

The reason is that a variable such as TT, though not statistically different in any pair of

groups, may introduce an added, independent dimension to another variable such as

L_max. Together they may distinguish group members more clearly than either alone.

The highest ranked features for classification are those that are found to contribute the

most information to the classifier.

In summary, the absence and ASD groups can be classified from either or both

control groups with nearly perfect accuracy. Although there is some overlap between

the absence and ASD groups, the classification accuracy of 75% is significantly better

than chance, as demonstrated by the permutation tests used to compute the

empirical p-values, as explained earlier in the methods section. The classification results

are illustrated in Fig. 3, which also suggests a decision support application for screening in

a clinical setting.

Figures 4, 5, 6, 7 show multiscale curves for each of the three groups (AE, ASD, con-

trols) at each scalp location, for each RQA or muliscale entropy value. Shading was

used to show where the most significant differences were between each pair of groups:

AE versus controls (red shading) and ASD versus controls (green shading). The

features that exhibit the greatest differences are L_max, the two entropy measures

(SampE and L_entr) and TT. Figure 8 shows scalp plots with multiscale graphs of

L_max and SampE for AE versus ASD groups. These differ primarily in central regions

of the scalp where the AE cases differ significantly from controls, but ASD cases do

not. L_max values for AE cases in Central (Fz, Cz, Pz, C3, C4) and Parietal regions (P3,

P4, and O1) were significantly lower than for the autism cases. One interpretation of

this is that atypical AE features are more widespread across the scalp than in ASD.

The AE group differed significantly from the controls at most sensor locations across

the scalp for one or more signal features when comparing the mean value of the curve

across all scales. EEG segments were chosen from AE cases from inter-ictal periods

Table 5 Classification results for the decision tree shown in Fig. 3

Groups Classification Empirical
p-value

Highest
ranked
features

Accuracy Sensitivity Specificity

AE versus controls 1.00 1.00 1.00 < 0.01 L_max, TT

ASD versus controls 0.97 1.00 0.94 < 0.01 L_max, TT

AE versus ASD 0.75 0.72 0.77 < 0.01 L_max

Control 1 versus Control 2 Control groups cannot be distinguished.

Empirical p-values are computed using the method of shuffled labels as described in [38]
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Fig. 3 Decision tree showing accuracy of classification for absence, autism, and control groups. a Controls
versus disease cases and absence versus autism; b absence versus controls; c autism versus controls

Fig. 4 Scalp plots for multiscale RQA measures are shown for absence epilepsy (AE), autism (ASD) and
controls. Regions where significant differences existed (p < .0001) are shaded in red (AE versus controls) or
green (ASD versus controls). From top to bottom: L_max, SampE
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and did not exhibit epileptiform activity in the eye of the neurophysiologist, excluding

that visibile interictal epileptiform discharges account for RQA differences. The ASD

group also differed significantly from the control groups, but scalp locations were not

as widely distributed. The most significant differences were in orbitofrontal (Fp1, Fp2),

left temporal (T7) and occipital (O1, O2) regions. Absence and ASD groups were more

difficult to differentiate from each other than from controls.

For all group comparisons, and for the feature ranking calculations discussed below,

L_max is the most useful feature for differentiating the absence, ASD and control

groups. Thus, group mean multiscale values for L_max are shown in Table 4 for each

sensor location and each group. The yellow highlighted values are those that differ

significantly between absence and ASD groups. L_max is lowest in the absence group

at every scalp location. L_max values for the ASD group are intermediate between

absence and controls at most locations, and indistinguishable from controls in central

regions. Multiscale L_max and sample entropy curves are shown in Fig. 8. Gray shading

is used to indicate where significant differences between mean values between epilepsy

and ASD cases are found.

Fig. 5 Scalp plots for multiscale RQA measures are shown. Regions where significant differences existed
(p < .0001) are shaded in red (epilepsy versus controls) or green (autism versus controls). From top to
bottom: L_entr, TT
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Discussion
Three general findings resulted that suggest RQA analysis may be useful for neurophysio-

logical research and future clinical applications. First, we found highly significant differ-

ences in the multiscale RQA curves between absence, ASD and control groups. Machine

learning classifiers were able to distinguish AE cases from controls with 100% accuracy and

ASD groups from controls with an accuracy of 97% (100% sensitivity, 94% specificity), as

shown in Table 5. P-values shown were derived by a permutation test procedure that

involves randomly shuffling group labels and performing the classification with the random

labels [54]. Secondly, the two control groups were indistinguishable. Not only were there

no significant control group differences in any of the values or scalp locations, but also

machine learning algorithms were unable to distinguish the two control groups using any

combination of the RQA features (p > 0.9 using the permutation procedure of [54]) This is

an important finding, because learning algorithms can find differences that may be due to

factors unrelated to those of interest, such as equipment differences. Finally, the most

significant spatial locations that differentiated the absence and ASD groups from controls

and from each other may give some insight into the neuronal dynamics that characterize

these conditions. We discuss these findings in more depth below.

Fig. 6 Scalp plots for multiscale RQA measures are shown. Regions where significant differences existed
(p < .0001) are shaded in red (epilepsy versus controls) or green (autism versus controls). From top to
bottom: RR, DET
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Fig. 7 Scalp plots for multiscale RQA measures are shown. Regions where significant differences existed
(p < .0001) are shaded in red (epilepsy versus controls) or green (autism versus controls). From top to
bottom: LAM, L_mean

Fig. 8 Significant differences between epilepsy and autism cases are shaded in gray. Only two dynamical
variables, L_max and SampE, revealed significant differences between autism and epilepsy. left: L_max,
right: SampE
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Control groups

Our initial expectation was that the control groups would be significantly different

from each other on at least some measures, since we thought that differences in

laboratory versus clinical settings and the different EEG equipment would intro-

duce systematic differences in the multiscale RQA values. This was not the case.

The two control groups had statistically indistinguishable complexity indices for

entropy and RQA values at every sensor location and for every dynamical variable.

Furthermore, in a 10-fold cross validation scheme, machine learning classifiers were

unable to differentiate the two control groups with accuracy better than random

chance. This was demonstrated using a permutation procedure to compute empir-

ical p-values [54].

This was in stark contrast to the nearly perfect classification accuracy when either

absence or ASD groups were classified with either or both control groups.

The controls from the ASD research study (Laboratories for Cognitive Neuroscience)

were carefully screened to not have any neurological or mental disorders. The controls

selected from the BCH Epilepsy Center were not so carefully screened, as might be

expected from a real clinical setting. Although these controls were determined to not have

epilepsy, and none were known to have ASD, they nevertheless were examined in a

tertiary neurology unit for other problems that ultimately were determined to include

conditions such as daydreaming, syncope, night terrors or sleepwalking. It is thus

surprising that no differences were found between the two control groups.

Detection of AE and ASD

Cognitive processes are the result of transient synchronization of local and distributed

neuronal assemblies [57]. Neuronal oscillations must balance the need for transient

synchronization and the pathological, runaway hyper-synchronization that results in an

epileptic seizure. The Lyapunov exponent is a measure of the amount of ‘chaos’ a time

series exhibits. The L_max value computed in this study is related to the largest Lyapunov

exponent of a time series [36]. The more chaotic a signal is, the higher the Lyapunov expo-

nent is, the more quickly it diverges from an initial trajectory when slightly perturbed.

Because of their greater propensity to diverge from an initial starting point, chaotic signals

can entrain and synchronize only transiently before diverging from each other. Lower

chaos is often an indication of an unhealthy physiological condition [51].

AE subjects revealed significantly different values at nearly all scalp locations in some of

the RQA values, and particularly L_max. Smaller L_max indicates less chaotic signals that

may synchronize for longer periods, increasing the probability of hypersynchronization

over larger neuronal assemblies. Thus, lower L_max is consistent with the AE group. As

shown in Table 3, the absence group has lower L_max values than the controls at every

sensor location. The ASD group is mixed: at some locations it has a similar L_max value

as controls. At several key locations (Fp1, Fp2, T7, P8, O1, O2) the L_max values of the

ASD group are significantly lower than controls, but higher than in the absence cases.

The absence subjects have much larger average trapping time (TT) values, though the

variability of TT values is greater, hence group differences are less significant. Larger TT

values indicate that the time series remain in a similar state for longer periods (the time

they are ‘trapped’ in a state is longer), which is consistent with lower chaotic activity. This
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might be interpreted as creating a greater probability of massive entrainment and

hypersynchronization.

Scalp location of most significant features

The ASD group differed significantly from controls for most features at Fp1, Fp2, T7,

P8, O1, O2, as noted previously. At these locations, the L_max values for ASD were

midway between the absence and control values, as for many other features (see

Table 3). This finding suggests that a common pathology may be involved that results

in lesser or different symptom manifestations in ASD when compared to AE cases.

The absence and ASD groups differed from each other primarily in central regions.

One interpretation of this is that absence features differ from controls in most scalp re-

gions whereas ASD atypicalities are focused in orbitofrontal, left temporal and occipital

regions. At most locations the ASD values were midway between the absence and con-

trol values. Since seizures may involve a synchronization process that entrains multiple

frequency bands leading to large amplitude, highly periodic and low complexity activity,

we speculate that the propensity to have seizures is represented by multiresolution dy-

namics. That is, the epileptic brain differs from non-epileptic brain over many time or

frequency scales. Summing derived values over many scales, such as with the complex-

ity index, includes some information from every scale. In biological systems, a lower

level of chaotic dynamics is often associated with pathological conditions [58–62].

Classification results shown in Table 4 reveal two important points. First, both AE

and ASD groups can accurately be distinguished from the controls. The AE and ASD

groups cannot be classified quite as well, with an accuracy of 75%, perhaps suggesting a

common pathology and fundamental similarities in neural network structures, at least

in some locations as discussed previously. Or, it may be that RQA analysis only

identifies a coarse-grained distinction between typical and atypical subjects, and is less

effective at distinguishing specific neuropathology.

We note again that the significance of group differences is computed from the mean

values derived from the multiscale curves. Future studies may take into account

differences across the entire multiscale curves, such as slope or area under the curve.

Machine learning classifiers might also use more information from the multiscale

curves if an appropriate metric is defined for differences between curves.

The above results reveal three important conclusions. First, the AE and ASD groups

each differ significantly from the control groups in many sensor locations and for 5 of the

8 signal features. L_max is the most useful biomarker for distinguishing these groups,

although other RQA values may also contribute useful information to bioprofiles for AE

and ASD. Second, AE and ASD groups differ significantly from each other primarily in

centrally located regions on the L_max feature. And finally, the two control groups are

indistinguishable on the basis of the signal features discussed in this paper, even though

they were measured in different settings using different EEG equipment, suggesting that

the features contain information that is independent of lab and EEG equipment.

Confounding factors and further study

Data and controls need to be interpreted in the clinical setting from which data was

acquired. Several confounding factors require further study. The control subjects from
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the BCH Epilepsy Clinic used in this study may have a variety of neurological distur-

bances that have not fully emerged. They presented in the clinic initially because of

some neurological concerns, though none was known to have a diagnosis of AE or

ASD. The controls derived from the Laboratories of Cognitive Neuroscience were

carefully screened for any known history of neurological or mental disorders. The

statistical equivalence of the two control groups found in our analysis gives greater

confidence in the appropriateness of both control groups. However, it remains puzzling

to us that some differences between the control groups did not appear, since the

controls from the Epilepsy Center were evaluated for suspected neurological condi-

tions. The controls from the LCN were carefully screened to not have any known

neurological or psychiatric condition.

The gender distribution between the groups differed. Control group 1 was 38% male,

while control group 2 was 91% male. The statistical similarity of these two groups on

nearly all measures suggests that gender was not a significant factor in our analysis.

The absence group was 50% male while the ASD group was 89% male. The fact that

the balance of male/female differed in the two control groups, and the results of our

analysis are the same, regardless of which control group was used, also suggests that

gender was not a significant factor. Nevertheless, further studies of gender differences

with larger study groups may be useful for gaining further insights. Early studies of

EEG complexity differences in children at risk for developing ASD based on family

history did suggest gender differences [49].

For this initial study, patients with AE were selected because they represent a

common diagnosis in the epilepsy population, are relatively easy to characterize clinic-

ally and electroencephalographically, and constitute one of the most homogeneous

groups of patients with epilepsy. Additionally, there are no clear structural brain abnor-

malities on structural MRI imaging, and there is no EEG slowing which may confound

results in other epilepsies or seizure types. Whether these findings will be applicable to

other patients with different types of epilepsy will require additional data sets with

patients who have clearly identified epilepsy syndromes. We hypothesize that if RQA

analysis is able to detect the dynamics of an epileptic brain, then different epilepsies

will reveal different spatial distributions than those seen for absence patients. In

particular, focal epilepsies will have atypical RQA values in the epileptic regions.

Conclusions
Our results demonstrate that EEG complexity, as measured by RQA analysis, may

contain information to detect AE, ASD and to distinguish children with these disorders

from typically developing children. The signal feature that is most highly ranked, Lmax,

is related to the Lyapunov exponent, which may be related to how easily neural

oscillators can synchronize, and this is ultimately related to epileptiform or spiking

activity and to seizures. Atypical dynamics were found to be more widespread in

absence cases than in ASD, but the commonalities may reveal similar neural network

pathologies in common scalp locations. Clinically, the classification results found in this

patient series suggest that RQA analysis may provide a useful biomarker profile for

both epilepsy and ASD, and a quantitative measure for comparing similarities and dif-

ferences between these common pediatric conditions. As a next step, larger validation

studies are required to confirm and potentially further these biomarkers prospectively.
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