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Abstract

Background: According to recent findings cognitive and emotional dysregulation in
depression and psychiatric disorders may be related to deficits in inhibitory functions
and temporo-limbic seizure-like activity due to specific changes in neural dynamics
and complexity of neural networks.

Methods: In order to evaluate the clinical utility of nonlinear analysis of EEG complexity
(measured by Lyapunov exponents) and to assess underlying epileptiform changes, we
studied a sample of 19 depressive patients including nine depressive patients with
episodic sharp-wave EEG abnormalities and ten depressive patients without any
abnormalities, and compared also subgroups of these patients who used benzodiazepine
medication to assess its influence on EEG complexity.

Results and findings: The results show that the depressive patients with episodic
sharp-wave EEG abnormalities had significantly lower EEG complexity than the control
groups of patients. The data also indicate that benzodiazepines significantly
influence neural complexity and increase it in the subgroup of patients with sharp
wave abnormalities, and on the other hand decrease the level of complexity in the
control subgroup of depressive patients.

Conclusions: In agreement with other findings results of this study suggest that sharp
waves or other underlying epileptiform EEG abnormalities related to abnormal neural
excitability and disturbances in brain inhibitory systems may be reflected in specific
changes of EEG complexity. These specific changes in EEG complexity may be related
to treatment resistance to usual medications in several depressive patients and might
represent clinical indicators for anticonvulsant treatment.
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Introduction
Cognitive and emotional dysregulation related to depression in many cases may be

linked to abnormal neural excitability and deficits in inhibitory functions that may also

lead to temporo-limbic seizure-like activity which in certain neural mechanisms is

similar to epilepsy (Post et al. 1988; Roberts et al. 1992). These findings are in agree-

ment with evidence of positive clinical response to anticonvulsant treatment in many

psychiatric patients (Silberman et al. 1985; Varney et al. 1993; Johannessen 2008; Vigo

& Baldessarini 2009; Kaufman 2011). In addition this increased vulnerability related to

kindling and sensitization may cause that the brain becomes more sensitized and the
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onset of future relapses is more sensitive to stressful life events than at the beginning

of the disease (Post et al. 1988; Bob et al. 2011a; Bob et al. 2011b).

Interesting new findings that could explain underlying dynamics of sensitization and

kindling processes provide data about spatio-temporal structure of epileptiform neural

dynamics that may be more regular with excessive order and lower neural complexity

than normal, or more irregular, as uncorrelated randomness with higher complexity

(Dawson 2004; Varela et al. 2001; Stam 2005). Together these data suggest that this

process of increased or decreased neural complexity calculated from the EEG and other

psychophysiological measures may reflect processes during activity of independent

areas with increased complexity, which enable desynchronized parallel information

processing or may reflect increased synchrony and coordinated neural activities with

decreased brain complexity (Tirsch et al. 2004; Weng et al. 1999). Decreased levels of

complexity are related to synchronization phenomena in the brain that are closely

linked to the integration of different neural events into a coherent whole which typically

occurs during epileptic seizures (Varela et al. 2001; Stam 2005). In order to evaluate the

clinical utility of nonlinear analysis of EEG complexity in assessing underlying epilepti-

form changes, we compared EEG records of 19 depressive patients including nine depres-

sive patients with episodic sharp-wave EEG abnormalities and ten depressive patients

without any abnormalities.
Method
Participants

The sample of patients included 19 patients with unipolar depression diagnosed ac-

cording to DSM-IV criteria (mean age 44.15; SD = 18.35; nine females, ten males),

right-handed, with high school education, who used mainly antidepressant medication

(both SSRI and non-SSRI) and some patients used also other types of medication that

included anticonvulsants, atypical antipsychotics, psychostimulants, benzodiazepines

and other types of medication (Table 1). Patients gave written informed consent for

therapeutic and research purposes of this study. The research was performed in collab-

oration with the project of Center for neuropsychiatric Research of Traumatic Stress

and Charles University (PRVOUK) that was approved by Charles University ethical
Table 1 Types of medication in the subgroups of depressive patients

Sharp-wave p. Control p.

Anticonvulsant 1 1

SSRI 2 6

Non-SSRI anti-depressant 2 3

Atypical antipsychotic 3 1

Benzodiazepines 2 3

Pain medication 1 1

Psychostimulants 1 2

Sleep aid 1 0

Stimulant 1 2

Alpha 2A adrenergic agonist 1 0

Thyroid medication 2 1
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committee. The patients were divided into two groups. The first included nine patients

who had episodic sharp-wave EEG abnormalities (mean age 44.20; SD = 15.62; four fe-

males, five males) and the second included ten depressive patients, who were without

any abnormalities (mean age 44.10; SD = 18.44; five females, five males). These two

groups were matched for age, gender and medication and these patients had not any

other psychiatric or neurological diagnoses.
EEG measurement

EEG records from each participant were measured using 20 channels placed in EEG

cap (based on the International 10/20 System) and Silver silver-chloride electrodes were

used. The acquisition-sampling rate was at 500 Hz and the filter settings were at 0.015

and 70. Because the aim of this study was to find relatively subtle changes that may be

significantly disrupted by outside stimuli, all EEG measurements were performed in a

quiet room in resting state with eyes closed. During the EEG recording, the participant

was seated in a comfortable chair and the EEG measurements were performed in a

room with temperature of about 23 °C. For further processing were used 200 s EEG

time series in order to calculate EEG complexity.
Data analysis

In the majority of previously reported studies, EEG complexity was calculated using an algo-

rithm for correlation dimension (D2), from a single-channel or from a multichannel EEG as

the global complexity, or using calculation of Largest Lyapunov exponents that characterize

brain complexity and sensitivity (Stam 2005; Elbert et al. 1994; Kantz & Schreiber 1997;

Palus 1998). More effective application to non-stationary data that was used in this study

provide momentary largest Lyapunov exponent series (MLLE) of “point” values for short

time intervals (Stam 2005; Kantz & Schreiber 1997). The Largest Lyapunov exponents were

calculated using the method of 5 s long sliding window using software package Dataplore.

In the analysis mutual information, False Nearest Neighbours, embedding dimension and

largest Lyapunov exponents for each channel were calculated. False Nearest Neighbours

technique utilizes geometric principles for the finding of embedding dimension which deter-

mines reconstruction of underlying dynamics of EEG complexity by means of Lyapunov ex-

ponents (Stam 2005; Kantz & Schreiber 1997).

In the study we have analyzed 180 EEG channels from nine patients who had episodic

sharp-wave EEG abnormalities and 200 EEG channels from ten depressive patients with-

out any abnormalities. These individual channels as dynamical characteristics then were

used to compare the data of these two groups, following the hypothesis that underlying

dynamics of patients with episodic sharp waves and the control of depressive patients

without EEG abnormalities might have different EEG complexity. All MLLE calculations

were performed on the raw data and separately for each EEG channel. Statistical evalu-

ation of MLLE values was performed using the software package Statistica version 8.0

(StatSoft Inc., Tulsa, OK, USA) and included descriptive statistics and Kruskal-Wallis

ANOVA. Because of non-parametric data distribution the Kruskal-Wallis ANOVA repre-

sents most appropriate method that provides valid information; even it does not provide

standardized method to assess effect sizes.
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Results and findings
The results indicate that MLLEs values specifically characterize these groups of patients and

show that the depressive patients with episodic sharp-wave EEG abnormalities (Mean =

0.5369; SD = 0.0026; N = 180; confidence interval +95 %, −95 %; 0.5317; 0.5419) have lower

MLLEs than the control group of depressive patients who were without any abnormalities

(Mean = 0.5429; SD = 0.0024; N = 200; confidence interval 0.5381; 0.5477). In the analysis

with a purpose to assess influences of benzodiazepine medication were compared also sub-

groups of patients (within both groups) who used benzodiazepines (Fig. 1). The data suggest

that benzodiazepines significantly influence neural complexity and increase it in the patients

with sharp wave abnormalities, and on the other hand decrease the level of complexity in

the control group of depressive patients. The analysis indicates that differences assessed by

Kruskal-Wallis ANOVA were statistically significant (Z > 2.8; H = 20.2; p < 0.01).
Discussion
In agreement with other findings results of this study indicate that sharp waves or other

epileptiform or epileptic EEG abnormalities related to abnormal neural excitability and

disturbances in brain inhibitory systems may be reflected in specific changes of EEG

complexity (Dawson 2004; Stam 2005). In this context, results of this study are in

agreement with findings about spatio-temporal structure of epileptiform neural dynamics

that may be more regular with excessive order and lower neural complexity than normal,

or more irregular, as uncorrelated randomness with higher complexity (Dawson 2004;

Varela et al. 2001; Stam 2005). Decreased levels of complexity are frequently related to

synchronization phenomena in the brain that are closely linked to the integration of differ-

ent neural events into a coherent whole which typically occurs during epileptic seizures,

nevertheless there is evidence that strongly as well as weakly coupled networks may
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Fig. 1 Differences in EEG complexity described by Momentary Largest Lypunov exponents (MLLE means
and standard deviations) for the groups of 9 depressive patients with sharp wave abnormalities (2 patients
used benzodiazepines- Sharp benzo) and the control group of 10 depressive patients without EEG abnormalities
(3 patients used benzodiazepines- non-Sharp benzo)



Bob Neuropsychiatric Electrophysiology  (2015) 1:11 Page 5 of 6
generate seizure activity (Varela et al. 2001; Stam 2005). On the other hand increased EEG

complexity may reflect processes during activity of independent areas and desynchronized

parallel information processing (Tirsch et al. 2004; Weng et al. 1999).

These recent findings show that strongly coupled networks and neural bursting are

prerequisites for the generation of synchronized neural activity and also epileptic activ-

ity, but likely also weakly coupled cortical networks and a reduction in synaptic trans-

mission can create the same process (van Drongelen et al. 2005). In this context there

is evidence that GABAergic neurons provide both inhibitory and disinhibitory modula-

tion of cortical and hippocampal circuits and contribute to the generation of oscillatory

rhythms and participate in discriminative information processing (Jacob et al. 2008).

Critical role in these processes likely play cortical inhibitory systems that enable modu-

lation of neural plasticity and organize cortical processes to an intended action and also

prevent aberrant activations (Jones 1993). In this context, results of this study indicate

that depressive patients with “sharp” epileptiform abnormalities have different values of

complexity than the control group of depressive patients, which suggests specific differ-

ences in inhibitory modulation among these subgroups of depressive patients that

might represent compensatory mechanism as a response to epileptiform activity. On

the other hand the data suggest that benzodiazepines that specifically modulate GABA

system (Vigo & Baldessarini 2009; Kaufman 2011) may have significant effect on the

values of complexity. This finding suggests that increased or decreased complexity

measured by MLLEs in various specific conditions could represent an indicator of

underlying epileptiform dynamics.

In context of recent findings this study provides results that potentially may explain

specific changes in EEG complexity underlying treatment resistance to usual medica-

tions in several depressive patients (Post et al. 1988; Roberts et al. 1992; Silberman

et al. 1985; Varney et al. 1993; Johannessen 2008) and also a possible clinical indicator

for appropriate anticonvulsant treatment. These findings also support recent data that

likely there is a link between disturbances in the GABA system and changes of EEG

complexity that may explain some processes in pathogenesis of depression and other

mental disorders, and their resistance to usual psychotropic medication that may be

compensated using anticonvulsant treatment (Stam 2005; Tirsch et al. 2004; Weng

et al. 1999; Jacob et al. 2008).

The preliminary results of this short communication are limited and further research

including large samples is necessary to confirm these results and also large clinical

study is needed to find whether these specific indicators of subclinical epileptiform ac-

tivity could provide clinically meaningful information. Major limitation of these data is

low number of patients and also combined medication. In addition this study was

cross-sectional and without detailed information about development of the disease in

each patient and possible co-morbidities in the past that might play a role in patient’s

current status. Relationships of the EEG complexity with respect to age and gender

were not found but further analysis is necessary to make any conclusions because of

limited number of patients included in the study.

On the other hand these two groups were defined by distinct parameters based on

EEG descriptive analysis providing information about presence or absence of sharp

waves in the records that as individual channels were used in the non-linear analysis.

Even these “sharp” waves distinguished from the background of other EEG activities
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were present as episodic abnormalities in distinct channels, the results of complexity

analysis suggest that sharp waves represent just an episodic visible sign of widespread

and large scale brain abnormalities. Although the results without replication on large

samples are far from any conclusions, the data suggest useful methodological approach

to measure underlying dynamic EEG abnormalities that might be very useful for clinical

practice as possible indicators of anticonvulsant treatment.
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